#### 1. INTRODUCTION:

If the equations  $a_1x + b_1 = 0$ ,  $a_2x + b_2 = 0$  are satisfied by the same value of x, then  $a_1b_2 - a_2b_1 = 0$ . The expression  $a_1b_2 - a_2b_1$  is called a determinant of the second order, and is denoted by:

$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

A determinant of second order consists of two rows and two columns.

Next consider the system of equations  $a_1x + b_1y + c_1 = 0$ ,  $a_2x + b_2y + c_2 = 0$ ,  $a_3x + b_3y + c_3 = 0$ 

If these equations are satisfied by the same values of x and y, then on eliminating x and y we get.

$$a_1(b_2c_3 - b_3c_2) + b_1(c_2a_3 - c_3a_2) + c_1(a_2b_3 - a_3b_2) = 0$$

The expression on the left is called a determinant of the third order, and is denoted by

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

A determinant of third order consists of three rows and three columns.

### 2. VALUE OF A DETERMINANT:

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} = a_1 (b_2 c_3 - b_3 c_2) - b_1 (a_2 c_3 - a_3 c_2) + c_1 (a_2 b_3 - a_3 b_2)$$

Note: Sarrus diagram to get the value of determinant of order three:

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = (a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2) - (a_3b_2c_1 + a_2b_1c_3 + a_1b_3c_2) + ve + ve + ve$$

Note that the product of the terms in first bracket (i.e.  $a_1a_2a_3b_1b_2b_3c_1c_2c_3$ ) is same as the product of the terms in second bracket.

## 3. MINORS & COFACTORS:

The minor of a given element of determinant is the determinant obtained by deleting the row & the column in which the given element stands.

For example, the minor of 
$$a_1$$
 in  $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$  is  $\begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$  & the minor of  $b_2$  is  $\begin{vmatrix} a_1 & c_1 \\ a_3 & c_3 \end{vmatrix}$ .

Hence a determinant of order three will have "9 minors".

If  $M_{ij}$  represents the minor of the element belonging to  $i^{th}$  row and  $j^{th}$  column then the cofactor of that element is given by :  $C_{ij} = (-1)^{i+j}$ .  $M_{ij}$ 

# 4. EXPANSION OF A DETERMINANT IN TERMS OF THE ELEMENTS OF ANY ROW OR COLUMN:

Let 
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

 The sum of the product of elements of any row (column) with their corresponding cofactors is always equal to the value of the determinant.

D can be expressed in any of the six forms:

$$\begin{aligned} a_1 A_1 + b_1 B_1 + c_1 C_1, & a_1 A_1 + a_2 A_2 + a_3 A_3, \\ a_2 A_2 + b_2 B_2 + c_2 C_2, & b_1 B_1 + b_2 B_2 + b_3 B_3, \\ a_3 A_3 + b_3 B_3 + c_3 C_3, & c_1 C_1 + c_2 C_2 + c_3 C_3, \end{aligned}$$

where  $A_i, B_i & C_i$  (i = 1,2,3) denote cofactors of  $a_i, b_i & c_i$  respectively.

The sum of the product of elements of any row (column) with the cofactors of other row (column) (ii) is always equal to zero.

Hence,

$$\mathbf{a}_{2}\mathbf{A}_{1} + \mathbf{b}_{2}\mathbf{B}_{1} + \mathbf{c}_{2}\mathbf{C}_{1} = \mathbf{0},$$

$$b_1A_1 + b_2A_2 + b_3A_3 = 0$$
 and so on.

where  $A_i, B_i & C_i$  (i = 1,2,3) denote cofactors of  $a_i, b_i & c_i$  respectively.

# Do yourself -1:

- (i)
- Calculate the value of the determinant  $\begin{bmatrix} 5 & -3 & 7 \\ -2 & 4 & -8 \\ 9 & 3 & -10 \end{bmatrix}$ (ii)
- The value of the determinant  $\begin{vmatrix} a & b & 0 \\ 0 & a & b \\ b & 0 & a \end{vmatrix}$  is equal to -(iii)

(C)0

(D) none of these

(A)  $a^3 - b^3$  (B)  $a^3 + b^3$  (iv) Find the value of 'k', if  $\begin{vmatrix} 1 & 2 & 0 \\ 2 & 3 & 1 \\ 3 & k & 2 \end{vmatrix} = 4$ 

## 5. PROPERTIES OF DETERMINANTS:

(a) The value of a determinant remains unaltered, if the rows & columns are inter-changed,

e.g. if 
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

(b) If any two rows (or columns) of a determinant be interchanged, the value of determinant is changed in sign only. e.g.

Let 
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 &  $D_1 = \begin{vmatrix} a_2 & b_2 & c_2 \\ a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{vmatrix}$ . Then  $D_1 = -D$ .

- (c) If all the elements of a row (or column) are zero, then the value of the determinant is zero.
- (d) If all the elements of any row (or column) are multiplied by the same number, then the determinant is multiplied by that number.

e.g. If 
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and  $D_1 = \begin{vmatrix} Ka_1 & Kb_1 & Kc_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ . Then  $D_1 = KD$ 

(e) If all the elements of a row (or column) are proportional (or identical) to the element of any other row, then the determinant vanishes, i.e. its value is zero.

e.g. If 
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{vmatrix} \Rightarrow D = 0$$
; If  $D_1 = \begin{vmatrix} a_1 & b_1 & c_1 \\ ka_1 & kb_1 & kc_1 \\ a_3 & b_3 & c_3 \end{vmatrix} \Rightarrow D_1 = 0$ 

(f) If each element of any row (or column) is expressed as a sum of two (or more) terms, then the determinant can be expressed as the sum of two (or more) determinants.

e.g. 
$$\begin{vmatrix} a_1 + x & b_1 + y & c_1 + z \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} x & y & z \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Note that: If 
$$D_r = \begin{vmatrix} f(r) & g(r) & h(r) \\ a & b & c \\ a_1 & b_1 & c_1 \end{vmatrix}$$

where  $r \in N$  and  $a,b,c, a_1, b_1,c_1$  are constants, then

$$\sum_{r=1}^{n} D_{r} = \begin{vmatrix} \sum_{r=1}^{n} f(r) & \sum_{r=1}^{n} g(r) & \sum_{r=1}^{n} h(r) \\ a & b & c \\ a_{1} & b_{1} & c_{1} \end{vmatrix}$$

(g) Row - column operation: The value of a determinant remains unaltered under a column  $(C_i)$  operation of the form  $C_i \rightarrow C_i + \alpha C_j + \beta C_k$   $(j, k \neq i)$  or row  $(R_i)$  operation of the form  $R_i \rightarrow R_i + \alpha R_j + \beta R_k$   $(j, k \neq i)$ . In other words, the value of a determinant is not altered by adding the elements of any row (or column) to the same multiples of the corresponding elements of any other row (or column)

e.g. Let 
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$D = \begin{vmatrix} a_1 + \alpha a_2 & b_1 + \alpha b_2 & c_1 + \alpha c_2 \\ a_2 & b_2 & c_2 \\ a_3 + \beta a_1 & b_3 + \beta b_1 & c_3 + \beta c_1 \end{vmatrix} (R_1 \to R_1 + \alpha R_2; R_3 \to R_3 + \beta R_2)$$

## Note:

- (i) By using the operation  $R_i \to xR_i + yR_j + zR_k$  (j,  $k \ne i$ ), the value of the determinant becomes x times the original one.
- (ii) While applying this property ATLEAST ONE ROW (OR COLUMN) must remain unchanged.

